Three-Dimensional Ultrasonic Imaging and Acoustic Emission Monitoring of Hydraulic Fractures in Tight Sandstone

Author:

Zhu WeiORCID,Wang Shangxu,Chang Xu,Zhai Hongyu,Wu Hezhen

Abstract

Hydraulic fracturing is an important means for the development of tight oil and gas reservoirs. Laboratory rock mechanics experiments can be used to better understand the mechanism of hydraulic fracture. Therefore, in this study we carried out hydraulic fracturing experiments on Triassic Yanchang Formation tight sandstone from the Ordos Basin, China. Sparse tomography was used to obtain ultrasonic velocity images of the sample during hydraulic fracturing. Then, combining the changes in rock mechanics parameters, acoustic emission activities, and their spatial position, we analyzed the hydraulic fracturing process of tight sandstone under high differential stress in detail. The experimental results illuminate the fracture evolution processes of hydraulic fracturing. The competition between stress-induced dilatancy and fluid flow was observed during water injection. Moreover, the results prove that the “seismic pump” mode occurs in the dry region, while the “dilation hardening” and “seismic pump” modes occur simultaneously in the partially saturated region; that is to say, the hydraulic conditions dominate the failure mode of the rock.

Funder

National Natural Science Foundation of China

Publisher

MDPI AG

Subject

Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3