Experimental Validation and Calibration of the Galvin Model with Artificial Tight Sandstones with Controlled Fractures

Author:

Zhang Yuangui12,Di Bangrang12

Affiliation:

1. State Key Laboratory of Petroleum Resource and Prospecting, China University of Petroleum (Beijing), Beijing 102249, China

2. CNPC Key Laboratory of Geophysical Exploration, China University of Petroleum (Beijing), Beijing 102249, China

Abstract

The study of fractures in the subsurface is very important in unconventional reservoirs since they are the main conduits for hydrocarbon flow. For this reason, a variety of equivalent medium theories have been proposed for the estimation of fracture and fluid properties within reservoir rocks. Recently, the Galvin model has been put forward to model the frequency-dependent elastic moduli in fractured porous rocks and has been widely used to research seismic wave propagation in fractured rocks. We experimentally investigated the feasibility of applying the Galvin model in fractured tight stones. For this proposal, three artificial fractured tight sandstone samples with the same background porosity (11.7% ± 1.2%) but different fracture densities of 0.00, 0.0312, and 0.0624 were manufactured. The fracture thickness was 0.06 mm and the fracture diameter was 3 mm in all the fractured samples. Ultrasonic P- and S-wave velocities were measured at 0.5 MHz in a laboratory setting in dry and water-saturated conditions in directions at 0°, 45°, and 90° to the fracture normal. The results were compared with theoretical predictions of the Galvin model. The comparison showed that model predictions significantly underestimated P- and S- wave velocities as well as P-wave anisotropy in water-saturated conditions, but overestimated P-wave anisotropy in dry conditions. By analyzing the differences between the measured results and theoretical predictions, we modified the Galvin model by adding the squirt flow mechanism to it and used the Thomsen model to obtain the elastic moduli in high- and low-frequency limits. The modified model predictions showed good fits with the measured results. To the best of our knowledge, this is the first study to validate and calibrate the frequency-dependent equivalent medium theories in tight fractured rocks experimentally.

Publisher

MDPI AG

Subject

Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3