A Novel Fault Feature Extraction Method for Bearing Rolling Elements Using Optimized Signal Processing Method

Author:

Li Weihan,Li Yang,Yu Ling,Ma Jian,Zhu Lei,Li Lingfeng,Chen Huayue,Deng Wu

Abstract

A rolling element signal has a long transmission path in the acquisition process. The fault feature of the rolling element signal is more difficult to be extracted. Therefore, a novel weak fault feature extraction method using optimized variational mode decomposition with kurtosis mean (KMVMD) and maximum correlated kurtosis deconvolution based on power spectrum entropy and grid search (PGMCKD), namely KMVMD-PGMCKD, is proposed. In the proposed KMVMD-PGMCKD method, a VMD with kurtosis mean (KMVMD) is proposed. Then an adaptive parameter selection method based on power spectrum entropy and grid search for MCKD, namely PGMCKD, is proposed to determine the deconvolution period T and filter order L. The complementary advantages of the KMVMD and PGMCKD are integrated to construct a novel weak fault feature extraction model (KMVMD-PGMCKD). Finally, the power spectrum is employed to deal with the obtained signal by KMVMD-PGMCKD to effectively implement feature extraction. Bearing rolling element signals of Case Western Reserve University and actual rolling element data are selected to prove the validity of the KMVMD-PGMCKD. The experiment results show that the KMVMD-PGMCKD can effectively extract the fault features of bearing rolling elements and accurately diagnose weak faults under variable working conditions.

Funder

National Natural Science Foundation of China

Publisher

MDPI AG

Subject

Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3