Fault Diagnosis Using Cascaded Adaptive Second-Order Tristable Stochastic Resonance and Empirical Mode Decomposition

Author:

Cui Hongjiang,Guan Ying,Deng Wu

Abstract

Aiming at the problems of poor decomposition quality and the extraction effect of a weak signal with strong noise by empirical mode decomposition (EMD), a novel fault diagnosis method based on cascaded adaptive second-order tristable stochastic resonance (CASTSR) and EMD is proposed in this paper. In the proposed method, low-frequency interference components are filtered by using high-pass filtering, and the restriction conditions of stochastic resonance theory are solved by using an ordinary variable-scale method. Then, a chaotic ant colony optimization algorithm with a global optimization ability is employed to adaptively adjust the parameters of the second-order tristable stochastic resonance system to obtain the optimal stochastic resonance, and noise reduction pretreatment technology based on CASTSR is developed to enhance the weak signal characteristics of low frequency. Next, the EMD is employed to decompose the denoising signal and extract the characteristic frequency from the intrinsic mode function (IMF), so as to realize the fault diagnosis of rolling bearings. Finally, the numerical simulation signal and actual bearing fault data are selected to prove the validity of the proposed method. The experiment results indicate that the proposed fault diagnosis method can enhance the decomposition quality of the EMD, effectively extract features of weak signals, and improve the accuracy of fault diagnosis. Therefore, the proposed fault diagnosis method is an effective fault diagnosis method for rotating machinery.

Funder

Science Researching Plans of Liaoning Province Education Department

National Natural Science Foundation of China

Publisher

MDPI AG

Subject

Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3