Transient Modelling of Rotating and Stationary Cylindrical Heat Pipes: An Engineering Model

Author:

Celik Metin,Paulussen Geert,van Erp Dennis,de Jong WiebrenORCID,Boe Bendiks

Abstract

Rotating wickless and stationary capillary cylindrical heat pipes are widely used heat transfer devices. Transient behavior of such heat pipes has been investigated numerically with computational fluid dynamics and lumped parameter models. In this paper, the advantages of both methods are combined into a novel engineering model that is low in computational cost but still accurate and rich in the details it provides. The model describes the interior dynamics of the heat pipe with a 2D representation of a cylindrical heat pipe. Liquid and vapor volumes are coarsely meshed in the axial direction. The cells are allowed to change in size in the radial direction during simulation. This allows for tracking the liquid/vapor interface without having to implement fine meshing. The model includes the equations for mass, momentum and energy and is applicable to both rotating and stationary heat pipes. The predictions of the model are validated with other experimental, numerical, and analytical works having an average deviation of less than 4%. The effects of various parameters on the system are explored. The presented model is suitable for the simulation of heat pipe systems in which both the level of detail and the computational cost are crucial factors.

Publisher

MDPI AG

Subject

Energy (miscellaneous),Energy Engineering and Power Technology,Renewable Energy, Sustainability and the Environment,Electrical and Electronic Engineering,Control and Optimization,Engineering (miscellaneous)

Cited by 5 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Effect of the State-of-the-Art Condenser Configuration on the Performance of Axially Rotating Wickless Heat Pipes;Journal of Thermal Science and Engineering Applications;2024-06-06

2. Comparison of Cooling Systems in Power Plant Units;Energies;2021-10-05

3. Evaluation of High Performance Rotor Cooling Techniques for Permanent Magnet Electric Motors;2021 IEEE International Electric Machines & Drives Conference (IEMDC);2021-05-17

4. Experimental determination of indicators of thermal state of refrigerator cars under operating conditions;Eastern-European Journal of Enterprise Technologies;2019-11-08

5. Dynamic Modeling of the Heat Pipe-Assisted Annealing Line;Journal of Heat Transfer;2019-07-22

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3