Comparison of Cooling Systems in Power Plant Units

Author:

Genbach Alexander,Beloev Hristo,Bondartsev David

Abstract

A new porous system in power plants allowing the management of the crisis of heat exchange at boiling water in porous structures has been investigated. This study refers to the thermal power plants of electrical power stations and devices for cutting natural and artificial mineral media. Combustion chambers and supersonic nozzles were cooled by different porous structures. The optimum cell sizes of the porous structures were determined and data on the heat transfer capacity for the (critical) heat flow were obtained. A thermal device in the form of a rocket-type burner with a detonation jet showed high efficiency for capillary-porous and flow-through cooling systems. The economic effect per burner is not less than 200–300 dollars, and the coolant consumption is reduced by dozens of times, which is environmentally important. A comparative evaluation of the investigated structures and coatings has advantages over other cooling systems. The integration of mesh structures with capillary-porous coatings of natural mineral media produces a synergistic effect of combining them into a technology of their manufacturing, the expansion of critical loads removal and control of the limit state of the coatings.

Publisher

MDPI AG

Subject

Energy (miscellaneous),Energy Engineering and Power Technology,Renewable Energy, Sustainability and the Environment,Electrical and Electronic Engineering,Control and Optimization,Engineering (miscellaneous)

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3