Author:
Genbach Alexander,Beloev Hristo,Bondartsev David
Abstract
A new porous system in power plants allowing the management of the crisis of heat exchange at boiling water in porous structures has been investigated. This study refers to the thermal power plants of electrical power stations and devices for cutting natural and artificial mineral media. Combustion chambers and supersonic nozzles were cooled by different porous structures. The optimum cell sizes of the porous structures were determined and data on the heat transfer capacity for the (critical) heat flow were obtained. A thermal device in the form of a rocket-type burner with a detonation jet showed high efficiency for capillary-porous and flow-through cooling systems. The economic effect per burner is not less than 200–300 dollars, and the coolant consumption is reduced by dozens of times, which is environmentally important. A comparative evaluation of the investigated structures and coatings has advantages over other cooling systems. The integration of mesh structures with capillary-porous coatings of natural mineral media produces a synergistic effect of combining them into a technology of their manufacturing, the expansion of critical loads removal and control of the limit state of the coatings.
Subject
Energy (miscellaneous),Energy Engineering and Power Technology,Renewable Energy, Sustainability and the Environment,Electrical and Electronic Engineering,Control and Optimization,Engineering (miscellaneous)
Cited by
2 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献