Developing a BLE Beacon-Based Location System Using Location Fingerprint Positioning for Smart Home Power Management

Author:

Ke ChihKun,Wu MeiYu,Chan YuWei,Lu KeCheng

Abstract

In recent years, smart homes have begun to use various sensors to detect the location of users indoors. However, such sensors may not be stable, resulting in high detection error rates. Thus, how to improve indoor positioning accuracy has become an important topic. This study explored Bluetooth Low Energy (BLE) Beacon indoor positioning for smart home power management. A novel system framework using BLE Beacon was proposed to detect the user location, and to perform power management in the home through a mobile device application. Since the BLE Beacon may produce a multipath effect, this study used the positioning algorithm and hardware configuration to reduce the error rate. Location fingerprint positioning algorithm and filter modification were used to establish a positioning method for facilitating deployment, and to reduce the required computing resources. The experiments included an observation of the Received Signal Strength Indicators (RSSI) and selecting filters and a discussion of the relationship between the characteristics of the BLE Beacon signal accuracy and the number of the BLE Beacons deployed in the observation space. The BLE Beacon multilateration positioning was combined with the In-Snergy intelligent energy management system for smart home power management. The contribution of this study is to allow users to enjoy smart home services based on their location within the home using a mobile device application.

Publisher

MDPI AG

Subject

Energy (miscellaneous),Energy Engineering and Power Technology,Renewable Energy, Sustainability and the Environment,Electrical and Electronic Engineering,Control and Optimization,Engineering (miscellaneous)

Cited by 25 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. On the accuracy of BLE indoor localization systems: An assessment survey;Computers and Electrical Engineering;2024-09

2. Hybrid Learning for Mobile Ad-Hoc Distancing/Positioning Using Bluetooth Low Energy;IEEE Internet of Things Journal;2023-07-15

3. Comparing Efficiency and Performance of IoT BLE and RFID-Based Systems for Achieving Contact Tracing to Monitor Infection Spread among Hospital and Office Staff;Sensors;2023-01-26

4. Development of indoor positioning application for rescue based on bluetooth low energy beacons;AIP Conference Proceedings;2023

5. Localization of mobile nodes in graphs using the True-range multilateration with node sorting (TriSort) approach in an indoor environment;2022 IEEE 24th Int Conf on High Performance Computing & Communications; 8th Int Conf on Data Science & Systems; 20th Int Conf on Smart City; 8th Int Conf on Dependability in Sensor, Cloud & Big Data Systems & Application (HPCC/DSS/SmartCity/DependSys);2022-12

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3