Comparing Efficiency and Performance of IoT BLE and RFID-Based Systems for Achieving Contact Tracing to Monitor Infection Spread among Hospital and Office Staff

Author:

Gendy Maggie1ORCID,Tham Phi1,Harrison Flynn1,Yuce Mehmet1ORCID

Affiliation:

1. Department of Electrical and Computer Systems Engineering, Monash University, Melbourne, VIC 3800, Australia

Abstract

COVID-19 is highly contagious and spreads rapidly; it can be transmitted through coughing or contact with virus-contaminated hands, surfaces, or objects. The virus spreads faster indoors and in crowded places; therefore, there is a huge demand for contact tracing applications in indoor environments, such as hospitals and offices, in order to measure personnel proximity while placing as little load on them as possible. Contact tracing is a vital step in controlling and restricting pandemic spread; however, traditional contact tracing is time-consuming, exhausting, and ineffective. As a result, more research and application of smart digital contact tracing is necessary. As the Internet of Things (IoT) and wearable sensor device studies have grown in popularity, this work has been based on the practicality and successful implementation of Bluetooth low energy (BLE) and radio frequency identification (RFID) IoT based wireless systems for achieving contact tracing. Our study presents autonomous, low-cost, long-battery-life wireless sensing systems for contact tracing applications in hospital/office environments; these systems are developed with off-the-shelf components and do not rely on end user participation in order to prevent any inconvenience. Performance evaluation of the two implemented systems is carried out under various real practical settings and scenarios; these two implemented centralised IoT contact tracing devices were tested and compared demonstrating their efficiency results.

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Biochemistry,Instrumentation,Atomic and Molecular Physics, and Optics,Analytical Chemistry

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3