Optimal Policy of Multiplayer Poker via Actor-Critic Reinforcement Learning

Author:

Shi DamingORCID,Guo XudongORCID,Liu Yi,Fan Wenhui

Abstract

Poker has been considered a challenging problem in both artificial intelligence and game theory because poker is characterized by imperfect information and uncertainty, which are similar to many realistic problems like auctioning, pricing, cyber security, and operations. However, it is not clear that playing an equilibrium policy in multi-player games would be wise so far, and it is infeasible to theoretically validate whether a policy is optimal. Therefore, designing an effective optimal policy learning method has more realistic significance. This paper proposes an optimal policy learning method for multi-player poker games based on Actor-Critic reinforcement learning. Firstly, this paper builds the Actor network to make decisions with imperfect information and the Critic network to evaluate policies with perfect information. Secondly, this paper proposes a novel multi-player poker policy update method: asynchronous policy update algorithm (APU) and dual-network asynchronous policy update algorithm (Dual-APU) for multi-player multi-policy scenarios and multi-player sharing-policy scenarios, respectively. Finally, this paper takes the most popular six-player Texas hold ’em poker to validate the performance of the proposed optimal policy learning method. The experiments demonstrate the policies learned by the proposed methods perform well and gain steadily compared with the existing approaches. In sum, the policy learning methods of imperfect information games based on Actor-Critic reinforcement learning perform well on poker and can be transferred to other imperfect information games. Such training with perfect information and testing with imperfect information models show an effective and explainable approach to learning an approximately optimal policy.

Publisher

MDPI AG

Subject

General Physics and Astronomy

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3