Steady vs. Dynamic Contributions of Different Doped Conducting Polymers in the Principal Components of an Electronic Nose’s Response

Author:

Haj Ammar Wiem1,Boujnah Aicha1,Boubaker Aimen1,Kalboussi Adel1,Lmimouni Kamal2,Pecqueur Sébastien2ORCID

Affiliation:

1. Department of Physics, University of Monastir Tunisia, Monastir 5000, Tunisia

2. Institute of Electronics, Microelectronics and Nanotechnology (IEMN, UMR 8520) | University Lille, CNRS, University Polytechnique Hauts-de-France , F-59000 Lille, France

Abstract

Multivariate data analysis and machine learning classification have become popular tools to extract features without physical models for complex environments recognition. For electronic noses, time sampling over multiple sensing elements must be a fair compromise between a period sufficiently long to output a meaningful information pattern and sufficiently short to minimize training time for practical applications. Particularly when a reactivity’s kinetics differ from the thermodynamics in sensitive materials, finding the best compromise to get the most from the data is not obvious. Here, we investigate the influence of data acquisition to improve or alter data clustering for molecular recognition on a conducting polymer electronic nose. We found out that waiting for sensing elements to reach their steady state is not required for classification, and that reducing data acquisition down to the first dynamical information suffices to recognize molecular gases by principal component analysis with the same materials. Especially for online inference, this study shows that a good sensing array is not an array of good sensors, and that new figures of merit should be defined for sensing hardware using machine learning pattern recognition rather than metrology.

Funder

French Research Agency

Publisher

MDPI AG

Subject

General Earth and Planetary Sciences

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3