Multi-Type Object Tracking Based on Residual Neural Network Model

Author:

Jiang Tao,Zhang QiuyanORCID,Yuan Jianying,Wang ChangyouORCID,Li Chen

Abstract

In this paper, a tracking algorithm based on the residual neural network model and machine learning is proposed. Compared with the widely used VGG network, the residual neural network has deeper characteristic layers and special additional layer structure, which break the symmetry of the network and reduce the degradation of the neural network. The additional layer and convolution layer are used for feature fusion to represent the target. The multi-features of the object can be captured by using the developed algorithm, so that the accuracy of tracking can be improved in some complex scenarios. In addition, we defined a new measure to calculate the similarity of different image regions and find the optimal matched region. The search area is delimited according to the continuity of the target motion, which improves the real-time performance of tracking. The experimental results illustrate that the proposed algorithm achieved a higher accuracy while taking into account the real time performance, especially in dealing with some complex scenarios such as deformation, rotation changes and background clutters, in comparison with the Multi-Domain Network (MDNet) algorithm based on a convolutional neural network.

Publisher

MDPI AG

Subject

Physics and Astronomy (miscellaneous),General Mathematics,Chemistry (miscellaneous),Computer Science (miscellaneous)

Reference43 articles.

1. Video surveillance based tracking system;Venkatesan,2015

2. ITS-light: Adaptive lightweight scheme to resource optimize intelligent transportation tracking system-customizing CoAP for opportunistic optimization;Bhattacharyya,2013

3. Computer vision elastography: speckle adaptive motion estimation for elastography using ultrasound sequences

4. Vision based hand gesture recognition for human computer interaction: a survey

5. Real-time tracking of non-rigid objects using mean shift

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3