A Deep Analysis of Brain Tumor Detection from MR Images Using Deep Learning Networks

Author:

Mahmud Md Ishtyaq1ORCID,Mamun Muntasir2,Abdelgawad Ahmed1ORCID

Affiliation:

1. College of Science and Engineering, Central Michigan University, Mount Pleasant, MI 48858, USA

2. Department of Computer Science, University of South Dakota, Vermillion, SD 57069, USA

Abstract

Creating machines that behave and work in a way similar to humans is the objective of artificial intelligence (AI). In addition to pattern recognition, planning, and problem-solving, computer activities with artificial intelligence include other activities. A group of algorithms called “deep learning” is used in machine learning. With the aid of magnetic resonance imaging (MRI), deep learning is utilized to create models for the detection and categorization of brain tumors. This allows for the quick and simple identification of brain tumors. Brain disorders are mostly the result of aberrant brain cell proliferation, which can harm the structure of the brain and ultimately result in malignant brain cancer. The early identification of brain tumors and the subsequent appropriate treatment may lower the death rate. In this study, we suggest a convolutional neural network (CNN) architecture for the efficient identification of brain tumors using MR images. This paper also discusses various models such as ResNet-50, VGG16, and Inception V3 and conducts a comparison between the proposed architecture and these models. To analyze the performance of the models, we considered different metrics such as the accuracy, recall, loss, and area under the curve (AUC). As a result of analyzing different models with our proposed model using these metrics, we concluded that the proposed model performed better than the others. Using a dataset of 3264 MR images, we found that the CNN model had an accuracy of 93.3%, an AUC of 98.43%, a recall of 91.19%, and a loss of 0.25. We may infer that the proposed model is reliable for the early detection of a variety of brain tumors after comparing it to the other models.

Publisher

MDPI AG

Subject

Computational Mathematics,Computational Theory and Mathematics,Numerical Analysis,Theoretical Computer Science

Cited by 75 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Knee Osteoporosis Diagnosis Based on Deep Learning;International Journal of Computational Intelligence Systems;2024-09-12

2. WGCAMNet: Wasserstein Generative Adversarial Network Augmented and Custom Attention Mechanism Based Deep Neural Network for Enhanced Brain Tumor Detection and Classification;Information;2024-09-11

3. An automated metaheuristic-optimized approach for diagnosing and classifying brain tumors based on a convolutional neural network;Results in Engineering;2024-09

4. Study of Brain Tumor Detection using Deep Learning Model;International Journal of Scientific Research in Computer Science, Engineering and Information Technology;2024-08-20

5. Alzheimer’s disease multiclass detection through deep learning models and post-processing heuristics;Computer Methods in Biomechanics and Biomedical Engineering: Imaging & Visualization;2024-08-07

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3