Abstract
In the foundry industry, silica sands are the most commonly used type of sands for the production of sand foundry moulds using various types of binders. Their greatest disadvantage is their significant volume changes at elevated temperatures, which are associated with the formation of many foundry defects from stress, such as veining, and thus have a direct influence on the final quality of the casting. In the case of non-silica sands and synthetic sands, the volume stability is more pronounced, but this is accompanied by a higher purchase price. Therefore, a combination of silica sand and synthetic sand CERABEADS is considered in order to influence and reduce the thermal expansion. The hybrid mixtures of sands, and their most suitable ratios, were evaluated in detail using sieve analysis, log W and cumulative curve of granularity. It was found that the addition of 50% CERABEADS achieves a 32.2% reduction in dilatation but may increase the risk of higher stresses. The measurements showed a significant effect of the granulometric composition of the sand on the resulting thermal expansion, where the choice of grain size and sorting can achieve a significant reduction in dilatation with a small addition of CERABEADS.
Funder
Ministry of Education, Youth and Sports
Subject
General Materials Science
Reference24 articles.
1. Molding and Casting Processes;Campbell,2017
2. The role of purity level in foundry silica sand on its thermal properties;Svidró,2020
3. Thermal aspects of temperature transformations in silica sand;Kowalski;Arch. Foundry Eng.,2010
4. Comparative experimental study of sand and binder for flowability and casting mold quality
5. Stress-induced β→α-cristobalite phase transformation in (Na2O+Al2O3)-codoped silica
Cited by
5 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献