Affiliation:
1. Central Aerohydrodynamic Institute (TsAGI), 140180 Zhukovsky, Russia
Abstract
The improved delayed detached Eddy simulation (IDDES) approach used in the part I of this investigation to study the self-ignition and combustion of hydrogen jets in a high-speed transverse flow of hot vitiated air in a duct is extended in the following directions: (i) the wall boundary conditions are modified to take into account the optical windows employed in the experiments; (ii) the detailed chemical kinetic model with 19 reactions is used; (iii) a nonlinear turbulence model is implemented in the code to capture the secondary flows in the duct corners; (iv) the wall roughness model is adapted; (v) the synthetic turbulence generator is imposed upstream of the fuel injection. As a result of improving the mathematical and physical problem statements, a good agreement between the simulation and the experimental database obtained at the LAERTE workbench (ONERA) is achieved.
Funder
Russian Science Foundation
Subject
Energy (miscellaneous),Energy Engineering and Power Technology,Renewable Energy, Sustainability and the Environment,Electrical and Electronic Engineering,Control and Optimization,Engineering (miscellaneous),Building and Construction
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献