Transient Characteristics of Fluidic Pintle Nozzle in a Solid Rocket Motor

Author:

Yan Dongfeng1ORCID,Zhao Zehang1,Song Anchen2,Li Fengming1,Ye Lu1,Zhao Ganchao1,Ma Shan1

Affiliation:

1. Flight Technology College, Civil Aviation Flight University of China, Guanghan 618307, China

2. Beijing System Design Institute of the Electro-Mechanic Engineering, Beijing 100039, China

Abstract

The fluidic pintle nozzle, a new method to control the thrust of a solid rocket motor, has been proposed in recent years by combining the pintle with the aerodynamic throat (fluidic throat). The study of static characteristics has proved that it has a remarkable effect on thrust control. To study the transient characteristics of the fluidic pintle nozzle, 2D transient simulations of a fluidic pintle nozzle propulsion system were conducted, employing dynamic meshing techniques. The Reynolds-averaged Navier–Stokes equations were meticulously solved, implementing a k–ω SST turbulence model. The thrust control principle of the fluid pintle nozzle was studied, and the wave structure was summarized. The transient characteristics of the secondary flow opening, secondary flow closing, pintle moving forward (pressure rise), and pintle moving backward (pressure drop) were obtained, and the effects of the injection angle and injection port position were studied. The response process after injection can be roughly divided into three stages: pressure propagation, pressure oscillation, and equilibrium stability, with time distributions of 0.4%, 5.39%, and 94.21%, respectively. In the process of the pintle moving forward, the rate of combustion chamber pressure increases and thrust decreases gradually because of the arc wall of the nozzle throat upstream, and the process of throats moving backward is just the opposite. Compared with the condition with a maximum throat opening and no secondary flow, the thrust of the condition with a minimum throat opening and a 0.3-flow-ratio secondary flow is increased by 80.95%. Under conditions of constrained flow ratio, the injection angle of the secondary flow ostensibly exerts negligible influence on the dynamic modulation of thrust. Nevertheless, it remains evident that a reduction in throat opening accentuates the impact of reverse injection. Furthermore, the proximity of the injection port to the head of the pintle is directly proportional to the efficacy of thrust control.

Funder

Fundamental Research Funds for the Central Universities

Publisher

MDPI AG

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3