Research on Q-Table Design for Maximum Power Point Tracking-Based Reinforcement Learning in PV Systems

Author:

Chen Yizhi1,Lin Dingyi2,Xu Fei2,Li Xingshuo2ORCID,Wang Wei1,Ding Shuye2

Affiliation:

1. NARI Technology Development Co., Ltd., Nanjing 211106, China

2. Department of Electrical and Automation Engineering, Xianlin Campus, Nanjing Normal University, Nanjing 210023, China

Abstract

Photovoltaic (PV) power generation is considered to be a clean energy source. Solar modules suffer from nonlinear behavior, which makes the maximum power point tracking (MPPT) technique for efficient PV systems particularly important. Conventional MPPT techniques are easy to implement but require fine tuning of their fixed step size. Unlike conventional MPPT, the MPPT based on reinforcement learning (RL-MPPT) has the potential to self-learn to tune step size, which is more adaptable to changing environments. As one of the typical RL algorithms, the Q-learning algorithm can find the optimal control strategy through the learned experiences stored in a Q-table. Thus, as the cornerstone of this algorithm, the Q-table has a significant impact on control ability. In this paper, a novel Q-table of reinforcement learning is proposed to maximize tracking efficiency with improved Q-table update technology. The proposed method discards the traditional MPPT idea and makes full use of the inherent characteristics of the Q-learning algorithm such as its fast dynamic response and simple algorithm principle. By establishing six kinds of Q-tables based on the RL-MPPT method, the optimal discretized state of a photovoltaic system is found to make full use of the energy of the photovoltaic system and reduce power loss. Therefore, under the En50530 dynamic test standard, this work compares the simulation and experimental results and their tracking efficiency using six kinds of Q-table, individually.

Funder

2022 Jiangsu Carbon Peak and Neutrality Technology Innovation Special Fund

Publisher

MDPI AG

Subject

Energy (miscellaneous),Energy Engineering and Power Technology,Renewable Energy, Sustainability and the Environment,Electrical and Electronic Engineering,Control and Optimization,Engineering (miscellaneous),Building and Construction

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3