Optimizing Photovoltaic System Performance through the Design and Development of an Artificial Neural Network MPPT Control

Author:

Meddah Mohamed1,Belarbi Ahmed Wahid1,Negadi Karim2,Djaballah Younes3

Affiliation:

1. Laboratory of Physics and Electrical Discharge, Electrotechnical Engineering Laboratory, University of Sciences and Technology of Oran

2. L2GEGI Laboratory, Department of Electrical Engineering, Faculty of Applied Science, University of Tiaret, BP 78 Zaaroura, 14000

3. Applied automation and diagnostic industrial laboratory (LAADI), Ziane Achour University of Djelfa, BP 3117

Abstract

Abstract This article conducts a thorough comparison of three Maximum Power Point Tracking control techniques for photovoltaic systems: Perturb and Observe, Incremental Conductance, and Artificial Neural Network. The study aims to identify the most effective MPPT method by subjecting each technique to numerical simulations. The article explores the performance, efficiency, and robustness of Perturb and Observe, Incremental Conductance and Artificial Neural Network in capturing the maximum power output from photovoltaic panels under varying environmental conditions. Following rigorous testing through numerical simulations, the superior technique is selected for implementation in a grid-connected photovoltaic power conversion chain. This research contributes valuable insights into the optimization of photovoltaic system performance through advanced MPPT control strategies, facilitating informed decisions for practical applications in renewable energy systems.

Publisher

Research Square Platform LLC

Reference44 articles.

1. Chun-guang Zhou and Liang Huang and Zai-xun Ling and Yi-bo Cui (2021) Research on MPPT control strategy of photovoltaic cells under multi-peak. Energy Reports 7: 283-292 https://doi.org/https://doi.org/10.1016/j.egyr.2021.01.068, Maximum power point tracking, Perturbation and observation method, Particle swarm algorithm, Multi-peak output, 2352-4847, ICPE 2020-The International Conference on Power Engineering

2. Ali Omar Baba and Guangyu Liu and Xiaohui Chen (2020) Classification and Evaluation Review of Maximum Power Point Tracking Methods. Sustainable Futures 2: 100020 https://doi.org/https://doi.org/10.1016/j.sftr.2020.100020, Tracking, MPPT, Soft computing, Advanced, Conventional, Comparison, Evaluation, Classification, 2666-1888

3. Harrag, Abdelghani and Messalti, Sabir (2019) PSO-based SMC variable step size P&O MPPT controller for PV systems under fast changing atmospheric conditions. International Journal of Numerical Modelling: Electronic Networks, Devices and Fields 32(5): e2603 https://doi.org/ https://doi.org/10.1002/jnm.2603, Wiley Online Library

4. TOZLU, Omer Faruk and CALIK, HUseyin (2021) A Review and Classification of Most Used MPPT Algorithms for Photovoltaic Systems. Hittite Journal of Science and Engineering 8(3): 207 –220 https://doi.org/10.17350/HJSE19030000231, Hitit University

5. Bouderres, Nacer and Kerdoun, Djallel and Djellad, Abdelhak and Chiheb, Sofiane and Dekhane, Azzeddine (2022) Optimization of Fractional Order PI Controller by PSO Algorithm Applied to a GridConnected Photovoltaic System.. Journal Europ{\'e}en des Syst{\`e}mes Automatis{\'e}s 65(4) https://doi.org/https://doi.org/10.18280/jesa.550401

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Advanced MPPT Control Algorithms: A Comparative Analysis of Conventional and Intelligent Techniques with Challenges;European Journal of Electrical Engineering and Computer Science;2024-07-17

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3