The “Federica” Hand

Author:

Esposito DanieleORCID,Savino SergioORCID,Andreozzi EmilioORCID,Cosenza ChiaraORCID,Niola Vincenzo,Bifulco PaoloORCID

Abstract

Hand prostheses partially restore hand appearance and functionalities. In particular, 3D printers have provided great opportunities by simplifying the manufacturing process and reducing costs. The “Federica” hand is 3D-printed and equipped with a single servomotor, which synergically actuates its five fingers by inextensible tendons; no springs are used for hand opening. A differential mechanical system simultaneously distributes the motor force on each finger in predefined portions. The proportional control of hand closure/opening is achieved by monitoring muscle contraction by means of a thin force sensor, as an alternative to EMG. The electrical current of the servomotor is monitored to provide sensory feedback of the grip force, through a small vibration motor. A simple Arduino board was adopted as the processing unit. A closed-chain, differential mechanism guarantees efficient transfer of mechanical energy and a secure grasp of any object, regardless of its shape and deformability. The force sensor offers some advantages over the EMG: it does not require any electrical contact or signal processing to monitor muscle contraction intensity. The activation speed (about half a second) is high enough to allow the user to grab objects on the fly. The cost of the device is less then 100 USD. The “Federica” hand has proved to be a lightweight, low-cost and extremely efficient prosthesis. It is now available as an open-source project (CAD files and software can be downloaded from a public repository), thus allowing everyone to use the “Federica” hand and customize or improve it.

Publisher

MDPI AG

Subject

Bioengineering

Reference50 articles.

1. Design and assessment of a low-cost, electromyographically controlled, prosthetic hand

2. Towards Ultra Low-Cost Myoactivated Prostheseshttps://www.hindawi.com/journals/bmri/2018/9634184/

3. 3D Printed Hand|Victoria Hand Projecthttps://www.victoriahandproject.com

4. Home|The Open Prosthetics Projecthttps://openprosthetics.org/

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3