An α2-Adrenergic Agonist, Brimonidine, Beneficially Affects the TGF-β2-Treated Cellular Properties in an In Vitro Culture Model

Author:

Watanabe MegumiORCID,Sato TatsuyaORCID,Tsugeno YuriORCID,Higashide Megumi,Furuhashi MasatoORCID,Umetsu Araya,Suzuki Soma,Ida YosukeORCID,Hikage FumihitoORCID,Ohguro Hiroshi

Abstract

We report herein on the effects of brimonidine (BRI), an α2-adrenergic agonist, on two-dimensional (2D) and three-dimensional (3D) cell-cultured TGF-β2-untreated and -treated human trabecular meshwork (HTM) cells. In the presence of TGF-β2 (5 ng/mL), (1) the effects of BRI on (1) the 2D HTM monolayers’ barrier function were investigated as estimated using trans-endothelial electrical resistance (TEER) measurement and FITC dextran permeability; (2) real-time analyses of cellular metabolism using a Seahorse Bioanalyzer; (3) the largeness and hardness of 3D spheroids; and (4) the expression of genes that encode extracellular matrix (ECM) proteins, including collagens (COL) 1, 4, and 6; fibronectin (FN) and α-smooth muscle actin (α-SMA); ECM modulators, including a tissue inhibitor of matrix proteinase (TIMP) 1–4; matrix metalloproteinase (MMP) 2, 9, and 14; and several endoplasmic reticulum (ER) stress-related genes, including the X-box-binding protein 1 (XBP1), the spliced XBP1 (sXBP1), glucose-regulated protein (GRP)78, GRP94, and CCAAT-enhancer-binding protein homologous protein (CHOP). BRI markedly inhibited the TGF-β2-induced increase in the values of TEER of the 2D cell monolayer and the hardness of the 3D spheroids, although it had no effect on their sizes. BRI also cancelled the TGF-β2-induced reduction in mitochondrial maximal respiration but had no effect on the glycolytic capacity. In addition, the gene expression of these molecules was quite different between the 2D and 3D cultures of HTM cells. The present observations found in this study indicate that BRI may beneficially affect TGF-β2-induced changes in both cultures, 2D and 3D, of HTM cells, although their structural and functional properties that were altered varied significantly between both cultures of HTM cells.

Publisher

MDPI AG

Subject

Bioengineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3