Lysophosphatidic Acid Modulates TGF-β2-Induced Biological Phenotype in Human Conjunctival Fibroblasts

Author:

Watanabe Megumi1ORCID,Tsugeno Yuri1ORCID,Sato Tatsuya23ORCID,Higashide Megumi1,Nishikiori Nami1ORCID,Umetsu Araya1,Ogawa Toshifumi23,Furuhashi Masato2ORCID,Ohguro Hiroshi1

Affiliation:

1. Departments of Ophthalmology, School of Medicine, Sapporo Medical University, S1W17, Chuo-ku, Sapporo 060-8556, Japan

2. Departments of Cardiovascular, Renal and Metabolic Medicine, Sapporo Medical University, S1W17, Chuo-ku, Sapporo 060-8556, Japan

3. Departments of Cellular Physiology and Signal Transduction, Sapporo Medical University, S1W17, Chuo-ku, Sapporo 060-8556, Japan

Abstract

Background: Although lysophosphatidic acid (LPA) is known to have multiple pathophysiological roles, its contributions to ocular tissues, especially conjunctival fibrogenesis, remain to be elucidated. Methods: To study this issue, the effects of LPA on transforming growth factor-β2 (TGF-β2)-induced fibrogenesis of two-dimensional (2D) and three-dimensional (3D) cultures of human conjunctival fibroblasts (HconF) were examined by the following analyses: (1) planar proliferation determined by transepithelial electrical resistance (TEER) and fluorescein isothiocyanate (FITC)-dextran permeability measurements, (2) real-time metabolic analyses, (3) measurements of the size and stiffness of 3D spheroids, and (4) mRNA expression of extracellular matrix (ECM) molecules and their modulators. Results: LPA had no effect on TGF-β2-induced increase in the planar proliferation of HconF cells. LPA induced a more quiescent metabolic state in 2D HconF cells, but this metabolic suppression by LPA was partially blunted in the presence of TGF-β2. In contrast, LPA caused a substantial decrease in the hardness of 3D HconF spheroids independently of TGF-β2. In agreement with these different LPA-induced effects between 2D and 3D cultured HconF cells, mRNA expressions of ECM and their modulators were differently modulated. Conclusion: The findings that LPA induced the inhibition of both TGF-β2-related and -unrelated subepithelial proliferation of HconF cells may be clinically applicable.

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3