Speech- and Language-Based Classification of Alzheimer’s Disease: A Systematic Review

Author:

Vigo Inês,Coelho Luis,Reis Sara

Abstract

Background: Alzheimer’s disease (AD) has paramount importance due to its rising prevalence, the impact on the patient and society, and the related healthcare costs. However, current diagnostic techniques are not designed for frequent mass screening, delaying therapeutic intervention and worsening prognoses. To be able to detect AD at an early stage, ideally at a pre-clinical stage, speech analysis emerges as a simple low-cost non-invasive procedure. Objectives: In this work it is our objective to do a systematic review about speech-based detection and classification of Alzheimer’s Disease with the purpose of identifying the most effective algorithms and best practices. Methods: A systematic literature search was performed from Jan 2015 up to May 2020 using ScienceDirect, PubMed and DBLP. Articles were screened by title, abstract and full text as needed. A manual complementary search among the references of the included papers was also performed. Inclusion criteria and search strategies were defined a priori. Results: We were able: to identify the main resources that can support the development of decision support systems for AD, to list speech features that are correlated with the linguistic and acoustic footprint of the disease, to recognize the data models that can provide robust results and to observe the performance indicators that were reported. Discussion: A computational system with the adequate elements combination, based on the identified best-practices, can point to a whole new diagnostic approach, leading to better insights about AD symptoms and its disease patterns, creating conditions to promote a longer life span as well as an improvement in patient quality of life. The clinically relevant results that were identified can be used to establish a reference system and help to define research guidelines for future developments.

Funder

Fundação para a Ciência e Tecnologia

Publisher

MDPI AG

Subject

Bioengineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3