In Silico Study to Enhance Delivery Efficiency of Charged Nanoscale Nasal Spray Aerosols to the Olfactory Region Using External Magnetic Fields

Author:

Li Benjamin,Feng YuORCID

Abstract

Various factors and challenges are involved in efficiently delivering drugs using nasal sprays to the olfactory region to treat central nervous system diseases. In this study, computational fluid dynamics was used to simulate nasal drug delivery to (1) examine effects on drug deposition when various external magnetic fields are applied to charged particles, (2) comprehensively study effects of multiple parameters (i.e., particle aerodynamic diameter; injection velocity magnitude, angle, and position; magnetic force strength and direction), and (3) determine how to achieve the optimal delivery efficiency to the olfactory epithelium. The Reynolds-averaged Navier–Stokes equations governed airflow, with a realistic inhalation waveform implemented at the nostrils. Particle trajectories were modeled using the one-way coupled Euler–Lagrange model. A current-carrying wire generated a magnetic field to apply force on charged particles and direct them to the olfactory region. Once drug particles reached the olfactory region, their diffusion through mucus to the epithelium was calculated analytically. Particle aerodynamic diameter, injection position, and magnetic field strength were found to be interconnected in their effects on delivery efficiency. Specific combinations of these parameters achieved over 65-fold higher drug delivery efficiency compared with uniform injections with no magnetic fields. The insight gained suggests how to integrate these factors to achieve the optimal efficiency.

Publisher

MDPI AG

Subject

Bioengineering

Reference48 articles.

1. The Burden of Neurological Conditions in the Region of the Americas, 2000–2019,2021

2. Neurological Disorders: Public Health Challenges,2006

3. Glioblastoma multiforme: Pathogenesis and treatment

4. The blood-brain barrier: Bottleneck in brain drug development

5. Mechanism of intranasal drug delivery directly to the brain

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3