Naturally Equipped Urinary Exosomes Coated Poly (2−ethyl−2−oxazoline)−Poly (D, L−lactide) Nanocarriers for the Pre−Clinical Translation of Breast Cancer

Author:

Ni Jiang,Mi Yuanyuan,Wang Bei,Zhu Yuting,Ding Yang,Ding Yongjuan,Li Xia

Abstract

Recently, biomimetic nanoparticles for tumor−targeted therapy have attracted intensifying interest. Although exosomes are an excellent biomimetic material, numerous challenges are still hindering its clinical applications, such as low yield, insufficient targeting efficiency, and high cost. In this work, urinary exosomes (UEs) with high expression of CD9 and CD47 were extracted from breast cancer patients by a non−invasive method. Here, a nanotechnology approach is reported for tumor homologous targeting via CD9 and phagocytosis escape via CD47 through UE−coated poly (2−ethyl−2−oxazoline)−poly (D, L−lactide) (PEOz−PLA) nanoparticles (UEPP NPs). The cytotoxic agent doxorubicin (DOX)−loaded UEPP (UEPP−D) NPs with an initial particle size of 61.5 nm showed a burst release under acidic condition mimicking the tumor microenvironment. In vitro experiments revealed that UEPP−D NPs exhibited significantly improved cellular uptake, cytotoxicity, and apoptosis in MCF−7 cell lines as compared to DOX−loaded PEOz−PLA nanoparticles (PP−D NPs) and free DOX. More importantly, anti−phagocytosis and pharmacokinetic studies confirmed that UEPP−D NPs had superior immune escape ability and significantly prolonged the drug’s bloodstream circulation in vivo. Finally, UEPP−D NPs showed a markedly higher antitumor efficacy and lower side−toxicity in MCF−7 tumor bearing nude mice model. Thus, this versatile nano−system with immune escape, homologous targeting, and rapid response release characteristics could be a promising tool for breast cancer treatment.

Funder

National Natural Science Foundation of China

the Top Talent Support Program for young and middle-aged people of Wuxi Health Committee

Publisher

MDPI AG

Subject

Bioengineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3