Author:
Jiang Zichao,Li Jingyi,Chen Sijie,Guo Qi,Jing Zhaocheng,Huang Biying,Pan Yixiao,Wang Long,Hu Yihe
Abstract
AbstractCurrently, nanoparticles (NPs) for cancer photothermal therapy (PTT) have limited in vivo clearance, lack targeting ability and have unsatisfactory therapeutic efficiency. Herein, we report a dual-targeting and photothermally triggered nanotherapeutic system based on superparamagnetic iron oxide (Fe3O4) and indocyanine green (ICG)-entrapped poly-lactide-co-glycolide modified by ZOL (PLGA-ZOL) NPs (ICG/Fe3O4@PLGA-ZOL) for PTT of breast cancer tibial metastasis, which occurs frequently in the clinic and causes challenging complications in breast cancer. In this system, both ICG and Fe3O4 can convert light into heat, while NPs with Fe3O4 and ZOL can be attracted to a specific location in bone under an external magnetic field. Specifically, the dual-targeting and double photothermal agents guaranteed high accumulation in the tibia and perfect PTT efficiency. Furthermore, the in vivo studies showed that ICG/Fe3O4@PLGA-ZOL NPs have extraordinary antitumor therapeutic effects and that these NPs can be accurately located in the medullary cavity of the tibia to solve problems with deep lesions, such as breast cancer tibial metastasis, showing great potential for cancer theranostics.
Funder
National Natural Science Foundation of China
Natural Science Foundation of Hunan Province
Hunan Provincial Science and Technology Department
Publisher
Springer Science and Business Media LLC
Cited by
26 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献