ResnetAge: A Resnet-Based DNA Methylation Age Prediction Method

Author:

Shi Lijuan12,Hai Boquan12,Kuang Zhejun12ORCID,Wang Han3ORCID,Zhao Jian12

Affiliation:

1. Key Laboratory of Intelligent Rehabilitation and Barrier-Free for the Disabled (Changchun University), Ministry of Education, Changchun University, Changchun 130012, China

2. Jilin Provincial Key Laboratory of Human Health Status Identification & Function Enhancement, Changchun 130022, China

3. The Institution of Computational Biology of Northeast Normal University, Changchun 130000, China

Abstract

Aging is a significant contributing factor to degenerative diseases such as cancer. The extent of DNA methylation in human cells indicates the aging process and screening for age-related methylation sites can be used to construct epigenetic clocks. Thereby, it can be a new aging-detecting marker for clinical diagnosis and treatments. Predicting the biological age of human individuals is conducive to the study of physical aging problems. Although many researchers have developed epigenetic clock prediction methods based on traditional machine learning and even deep learning, higher prediction accuracy is still required to match the clinical applications. Here, we proposed an epigenetic clock prediction method based on a Resnet neuro networks model named ResnetAge. The model accepts 22,278 CpG sites as a sample input, supporting both the Illumina 27K and 450K identification frameworks. It was trained using 32 public datasets containing multiple tissues such as whole blood, saliva, and mouth. The Mean Absolute Error (MAE) of the training set is 1.29 years, and the Median Absolute Deviation (MAD) is 0.98 years. The Mean Absolute Error (MAE) of the validation set is 3.24 years, and the Median Absolute Deviation (MAD) is 2.3 years. Our method has higher accuracy in age prediction in comparison with other methylation-based age prediction methods.

Funder

National Natural Science Foundation of China

Jilin Scientific and Technological Development Program

Jilin Provincial Department of Human Resources and Social Security

Publisher

MDPI AG

Subject

Bioengineering

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3