Reshaping Bioacoustics Event Detection: Leveraging Few-Shot Learning (FSL) with Transductive Inference and Data Augmentation

Author:

Ijaz Nouman1ORCID,Banoori Farhad23ORCID,Koo Insoo1ORCID

Affiliation:

1. Department of Electrical, Electronics and Computer Engineering, University of Ulsan, Ulsan 44610, Republic of Korea

2. School of Electronics and Information Engineering, South China University of Technology, Guangzhou 510641, China

3. Faculty of Computer Sciences, Department of Computer Science, ILMA University, Karachi City 74900, Pakistan

Abstract

Bioacoustic event detection is a demanding endeavor involving recognizing and classifying the sounds animals make in their natural habitats. Traditional supervised learning requires a large amount of labeled data, which are hard to come by in bioacoustics. This paper presents a few-shot learning (FSL) method incorporating transductive inference and data augmentation to address the issues of too few labeled events and small volumes of recordings. Here, transductive inference iteratively alters class prototypes and feature extractors to seize essential patterns, whereas data augmentation applies SpecAugment on Mel spectrogram features to augment training data. The proposed approach is evaluated by using the Detecting and Classifying Acoustic Scenes and Events (DCASE) 2022 and 2021 datasets. Extensive experimental results demonstrate that all components of the proposed method achieve significant F-score improvements of 27% and 10%, for the DCASE-2022 and DCASE-2021 datasets, respectively, compared to recent advanced approaches. Moreover, our method is helpful in FSL tasks because it effectively adapts to sounds from various animal species, recordings, and durations.

Funder

National Research Foundation of Korea

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3