1. Achille, A., Soatto, S.: Information dropout: learning optimal representations through noisy computation. IEEE Trans. Pattern Anal. Mach. Intell. 40(12), 2897–2905 (2018).
https://doi.org/10.1109/TPAMI.2017.2784440
2. Bianchi, F.M., Maiorino, E., Kampffmeyer, M.C., Rizzi, A., Jenssen, R.: An overview and comparative analysis of recurrent neural networks for short term load forecasting (2017).
arXiv:1705.04378
3. Deng, L., Dong, Y., et al.: Deep learning: methods and applications. Found. Trends® Signal Process. 7(3–4), 197–387 (2014).
https://doi.org/10.1007/978-981-13-3459-7_3
4. Erhan, D., Bengio, Y., Courville, A., Manzagol, P.-A., Vincent, P., Bengio, S.: Why does unsupervised pre-training help deep learning? J. Mach. Learn. Res. 11, 625–660 (2010)
5. Goodfellow, I., Pouget-Abadie, J., Mirza, M., Xu, B., Warde-Farley, D., Ozair, S., Courville, A., Bengio, Y.: Generative adversarial nets. In: Advances in neural information processing systems, pp. 2672–2680 (2014)