Effects of Exercise on the Inter-Session Accuracy of sEMG-Based Hand Gesture Recognition

Author:

Liu Xiangyu1,Dai Chenyun2,Liu Jionghui3ORCID,Yuan Yangyang4

Affiliation:

1. College of Publishing, University of Shanghai for Science and Technology, Shanghai 200093, China

2. School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai 200241, China

3. Institute of Science and Technology for Brain-Inspired Intelligence, Fudan University, Shanghai 200433, China

4. School of Information Science and Technology, Fudan University, Shanghai 200433, China

Abstract

Surface electromyography (sEMG) is commonly used as an interface in human–machine interaction systems due to their high signal-to-noise ratio and easy acquisition. It can intuitively reflect motion intentions of users, thus is widely applied in gesture recognition systems. However, wearable sEMG-based gesture recognition systems are susceptible to changes in environmental noise, electrode placement, and physiological characteristics. This could result in significant performance degradation of the model in inter-session scenarios, bringing a poor experience to users. Currently, for noise from environmental changes and electrode shifting from wearing variety, numerous studies have proposed various data-augmentation methods and highly generalized networks to improve inter-session gesture recognition accuracy. However, few studies have considered the impact of individual physiological states. In this study, we assumed that user exercise could cause changes in muscle conditions, leading to variations in sEMG features and subsequently affecting the recognition accuracy of model. To verify our hypothesis, we collected sEMG data from 12 participants performing the same gesture tasks before and after exercise, and then used Linear Discriminant Analysis (LDA) for gesture classification. For the non-exercise group, the inter-session accuracy declined only by 2.86%, whereas that of the exercise group decreased by 13.53%. This finding proves that exercise is indeed a critical factor contributing to the decline in inter-session model performance.

Funder

Shanghai Sailing Program

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3