A Rapid and Sensitive Aptamer-Based Biosensor for Amnesic Shellfish Toxin Domoic Acid

Author:

Zhao Luming,Guo Han,Chen Han,Zou BinORCID,Yang Chengfang,Zhang XiaojuanORCID,Gao Yun,Sun Mingjuan,Wang Lianghua

Abstract

With the incidence of harmful algal blooms (HABs) increasing in recent years, the urgent demand for the detection of domoic acid (DA), an amnesic shellfish toxin mainly produced by red tide algae Pseudonitzschia, has aroused increasing attention. Aptamers, a new molecular recognition element, provide clarity in the monitoring of DA. In this study, aptamers of DA were successfully screened by Capture-SELEX. Through identification and truncation optimization, aptamer C1-d with a high affinity (KD value, 109 nM) and high specificity for DA was obtained. The binding mechanism between DA and the aptamer was explored by molecular docking and molecular dynamics (MD) simulation, revealing the critical sites for DA–aptamer interaction. Meanwhile, a BLI-based aptasensor was constructed by C1-d, which displayed a linear range from 0.625 to 10 μM and a LOD of 13.7 nM. This aptasensor exhibited high specificity, good precision and repeatability, and high recovery rates for real samples; the process of detection could be completed in 7 min. This study is the first to identify and investigate the binding mechanism of DA–aptamer interaction and constructed a BLI-based aptasensor for DA, which lays a theoretical foundation for the detection and prevention of DA.

Funder

Nation Natural Science Foundation of China

National Key R&D Program of China

Publisher

MDPI AG

Subject

Bioengineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3