3D-Printed Piezoelectric Porous Bioactive Scaffolds and Clinical Ultrasonic Stimulation Can Help in Enhanced Bone Regeneration

Author:

Sikder PrabahaORCID,Nagaraju Phaniteja,Naganaboyina Harsha P. S.

Abstract

This paper presents a comprehensive effort to develop and analyze first-of-its-kind design-specific and bioactive piezoelectric scaffolds for treating orthopedic defects. The study has three major highlights. First, this is one of the first studies that utilize extrusion-based 3D printing to develop design-specific macroporous piezoelectric scaffolds for treating bone defects. The scaffolds with controlled pore size and architecture were synthesized based on unique composite formulations containing polycaprolactone (PCL) and micron-sized barium titanate (BaTiO3) particles. Second, the bioactive PCL-BaTiO3 piezoelectric composite formulations were explicitly developed in the form of uniform diameter filaments, which served as feedstock material for the fused filament fabrication (FFF)-based 3D printing. A combined method comprising solvent casting and extrusion (melt-blending) was designed and deemed suitable to develop the high-quality PCL-BaTiO3 bioactive composite filaments for 3D printing. Third, clinical ultrasonic stimulation (US) was used to stimulate the piezoelectric effect, i.e., create stress on the PCL-BaTiO3 scaffolds to generate electrical fields. Subsequently, we analyzed the impact of scaffold-generated piezoelectric stimulation on MC3T3 pre-osteoblast behavior. Our results confirmed that FFF could form high-resolution, macroporous piezoelectric scaffolds, and the poled PCL-BaTiO3 composites resulted in the d33 coefficient in the range of 1.2–2.6 pC/N, which is proven suitable for osteogenesis. In vitro results revealed that the scaffolds with a mean pore size of 320 µm resulted in the highest pre-osteoblast growth kinetics. While 1 Hz US resulted in enhanced pre-osteoblast adhesion, proliferation, and spreading, 3 Hz US benefited osteoblast differentiation by upregulating important osteogenic markers. This study proves that 3D-printed bioactive piezoelectric scaffolds coupled with US are promising to expedite bone regeneration in orthopedic defects.

Funder

Cleveland State University

Publisher

MDPI AG

Subject

Bioengineering

Cited by 12 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3