Piezo‐biphasic scaffold based on polycaprolactone containing BaTiO3 and hydroxyapatite nanoparticles using three‐dimensional printing for bone regeneration

Author:

Salehi Sadati Roza1,Eslami Hossein1,Rafienia Mohammad2,Ansari Mojtaba1ORCID

Affiliation:

1. Department of Biomedical Engineering Meybod University Meybod Iran

2. Department of Biomaterials, Nanotechnology and Tissue Engineering, School of Advanced Technologies in Medicine Isfahan University of Medical Sciences Isfahan Iran

Abstract

AbstractThe present study intends to establish biphasic composite scaffolds containing polycaprolactone/hydroxyapatite (PCL/HA) and PCL/barium titanate (PCL/BT) layers with improved mechanical and biological properties by preserving HA and tuning BT contents. The porous piezo‐biphasic scaffolds were fabricated, using extrusion three‐dimensional printer technology, and on the basis of the scanning electron microscopy results, a relative porosity of 210–250 µm was created. The presence of BT phase in the biphasic scaffolds was confirmed by X‐ray diffraction and Fourier transform infrared analyses. The printed biphasic composites demonstrate suitable mechanical strength compared to one containing only 35% PCL and 65% HA compositions, which had a strength of 2.5 MPa. However, the strength for 80% BT‐incorporated biphasic composite was almost 13.5 times higher than that of monolithic specimen. The measured output voltages for the scaffolds after being subjected to an electric field affirmed that adding BT nanoparticles in biphasic composites leads to an increase in the output voltage that was lower compared to the monolithic scaffold. The piezo‐biphasic scaffold containing 80% BT is found to possess the highest enhancement in cytocompatibility for MG63 cells with the survival rate of approximately 95%, rendering the PCL/HA–PCL/BT biphasic scaffolds promising candidates for bone regeneration.

Publisher

Wiley

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3