Biomass Grinding Process Optimization Using Response Surface Methodology and a Hybrid Genetic Algorithm

Author:

Tumuluru Jaya,Heikkila Dean

Abstract

Biomass could be a key source of renewable energy. Agricultural waste products, such as corn stover, provide a convenient means to replace fossil fuels, such as coal, and a large amount of feedstock is currently available for energy consumption in the U.S. This study has two main objectives: (1) to understand the impact of corn stover moisture content and grinder speed on grind physical properties; and (2) develop response surface models and optimize these models using a hybrid genetic algorithm. The response surface models developed were used to draw surface plots to understand the interaction effects of the corn stover grind moisture content and grinder speed on the grind physical properties and specific energy consumption. The surface plots indicated that a higher corn stover grind moisture content and grinder speed had a positive effect on the bulk and tapped density. The final grind moisture content was highly influenced by the initial moisture content of the corn stover grind. Optimization of the response surface models using the hybrid genetic algorithm indicated that moisture content in the range of 17 to 19% (w.b.) and a grinder speed of 47 to 49 Hz maximized the bulk and tapped density and minimized the geomantic mean particle length. The specific energy consumption was minimized when the grinder speed was about 20 Hz and the corn stover grind moisture content was about 10% (w.b.).

Publisher

MDPI AG

Subject

Bioengineering

Reference52 articles.

1. Global Forest Resources Assessmentswww.fao.org/docrep/013/i1757e/i1757e.pdf

2. Fine grinding of wood – Overview from wood breakage to applications

3. Why biomass preprocessing and pretreatments;Tumuluru,2018

4. Factors Affecting Power Requirements for Chipping Whole Trees;Stokes,1987

5. A survey of Italian chipping operations

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3