Detecting Skin Reactions in Epicutaneous Patch Testing with Deep Learning: An Evaluation of Pre-Processing and Modality Performance

Author:

Vezakis Ioannis A.1ORCID,Lambrou George I.123ORCID,Kyritsi Aikaterini4ORCID,Tagka Anna4ORCID,Chatziioannou Argyro4ORCID,Matsopoulos George K.1ORCID

Affiliation:

1. Biomedical Engineering Laboratory, School of Electrical & Computer Engineering, National Technical University of Athens, 9 Iroon Polytechniou St., 15780 Athens, Greece

2. Choremeio Research Laboratory, First Department of Pediatrics, National and Kapodistrian University of Athens, 8 Thivon & Levadeias St., 11527 Athens, Greece

3. University Research Institute of Maternal and Child Health & Precision Medicine, National and Kapodistrian University of Athens, 8 Thivon & Levadeias St., 11527 Athens, Greece

4. First Department of Dermatology and Venereology, “Andreas Syggros” Hospital, National and Kapodistrian University of Athens, 5 Ionos Dragoumi St., 11621 Athens, Greece

Abstract

Epicutaneous patch testing is a well-established diagnostic method for identifying substances that may cause Allergic Contact Dermatitis (ACD), a common skin condition caused by exposure to environmental allergens. While the patch test remains the gold standard for identifying allergens, it is prone to observer bias and consumes valuable human resources. Deep learning models can be employed to address this challenge. In this study, we collected a dataset of 1579 multi-modal skin images from 200 patients using the Antera 3D® camera. We then investigated the feasibility of using a deep learning classifier for automating the identification of the allergens causing ACD. We propose a deep learning approach that utilizes a context-retaining pre-processing technique to improve the accuracy of the classifier. In addition, we find promise in the combination of the color image and false-color map of hemoglobin concentration to improve diagnostic accuracy. Our results showed that this approach can potentially achieve more than 86% recall and 94% specificity in identifying skin reactions, and contribute to faster and more accurate diagnosis while reducing clinician workload.

Funder

European Regional Development Fund of the European Union and Greek national funds

Publisher

MDPI AG

Subject

Bioengineering

Reference29 articles.

1. Allergic Contact Dermatitis;Kimber;Int. Immunopharmacol.,2002

2. De Groot, A.C. (2001). Patch Testing, Acdegroot Publishing. [5th ed.].

3. Contact Dermatitis: A Quarter Century Perspective;Cohen;J. Am. Acad. Dermatol.,2004

4. Allergic Contact Dermatitis;Mowad;Int. Immunopharmacol.,2002

5. Johansen, J.D., Frosch, P.J., and Lepoittevin, J.P. (2010). Contact Dermatitis, Springer.

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3