Hybrid Deep Neural Network Framework Combining Skeleton and Gait Features for Pathological Gait Recognition

Author:

Jun Kooksung12ORCID,Lee Keunhan3ORCID,Lee Sanghyub2ORCID,Lee Hwanho3ORCID,Kim Mun Sang2ORCID

Affiliation:

1. Robocare, Seongnam 13449, Republic of Korea

2. School of Integrated Technology, Gwangju Institute of Science and Technology, Gwangju 61005, Republic of Korea

3. Department of Otolaryngology-Head and Neck Surgery, Kosin University College of Medicine, Busan 49267, Republic of Korea

Abstract

Human skeleton data obtained using a depth camera have been used for pathological gait recognition to support doctor or physician diagnosis decisions. Most studies for skeleton-based pathological gait recognition have used either raw skeleton sequences directly or gait features, such as gait parameters and joint angles, extracted from raw skeleton sequences. We hypothesize that using skeleton, joint angles, and gait parameters together can improve recognition performance. This study aims to develop a deep neural network model that effectively combines different types of input data. We propose a hybrid deep neural network framework composed of a graph convolutional network, recurrent neural network, and artificial neural network to effectively encode skeleton sequences, joint angle sequences, and gait parameters, respectively. The features extracted from three different input data types are fused and fed into the final classification layer. We evaluate the proposed model on two different skeleton datasets (a simulated pathological gait dataset and a vestibular disorder gait dataset) that were collected using an Azure Kinect. The proposed model, with multiple types of input, improved the pathological gait recognition performance compared to single input models on both datasets. Furthermore, it achieved the best performance among the state-of-the-art models for skeleton-based action recognition.

Funder

Open AI Dataset Project

Korea Health Industry Development Institute

Ministry of Trade, Industry, and Energy

Korea Institute for Advancement of Technology

Publisher

MDPI AG

Subject

Bioengineering

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3