GaitSG: Gait Recognition with SMPLs in Graph Structure

Author:

Yan Jiayi1,Wang Shaohui1,Lin Jing1,Li Peihao1,Zhang Ruxin1,Wang Haoqian1

Affiliation:

1. Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen 518055, China

Abstract

Gait recognition aims to identify a person based on his unique walking pattern. Compared with silhouettes and skeletons, skinned multi-person linear (SMPL) models can simultaneously provide human pose and shape information and are robust to viewpoint and clothing variances. However, previous approaches have only considered SMPL parameters as a whole and are yet to explore their potential for gait recognition thoroughly. To address this problem, we concentrate on SMPL representations and propose a novel SMPL-based method named GaitSG for gait recognition, which takes SMPL parameters in the graph structure as input. Specifically, we represent the SMPL model as graph nodes and employ graph convolution techniques to effectively model the human model topology and generate discriminative gait features. Further, we utilize prior knowledge of the human body and elaborately design a novel part graph pooling block, PGPB, to encode viewpoint information explicitly. The PGPB also alleviates the physical distance-unaware limitation of the graph structure. Comprehensive experiments on public gait recognition datasets, Gait3D and CASIA-B, demonstrate that GaitSG can achieve better performance and faster convergence than existing model-based approaches. Specifically, compared with the baseline SMPLGait (3D only), our model achieves approximately twice the Rank-1 accuracy and requires three times fewer training iterations on Gait3D.

Funder

National Key Research and Development Program of China

Shenzhen Science and Technology Project under Grant

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Biochemistry,Instrumentation,Atomic and Molecular Physics, and Optics,Analytical Chemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3