Dynamics of Two-Link Musculoskeletal Chains during Fast Movements: Endpoint Force, Axial, and Shear Joint Reaction Forces

Author:

Biscarini Andrea1ORCID

Affiliation:

1. Department of Medicine and Surgery, University of Perugia, 06132 Perugia, Italy

Abstract

This study provides a dynamic model for a two-link musculoskeletal chain controlled by single-joint and two-joint muscles. The chain endpoint force, and the axial and shear components of the joint reaction forces, were expressed analytically as a function of the muscle forces or torques, the chain configuration, and the link angular velocities and accelerations. The model was applied to upper-limb ballistic push movements involving transverse plane shoulder flexion and elbow extension. The numerical simulation highlights that the shoulder flexion and elbow extension angular acceleration at the initial phase of the movement, and the elbow extension angular velocity and acceleration at the later phase of the movement, induce a proportional medial deviation in the endpoint force direction. The forearm angular velocity and acceleration selectively affect the value of the axial and shear components of the shoulder reaction force, depending on the chain configuration. The same goes for the upper arm and elbow. The combined contribution of the elbow extension angular velocity and acceleration may give rise to anterior shear force acting on the humerus and axial forearm traction force as high as 300 N. This information can help optimize the performance and estimate/control of the joint loads in ballistic sport activities and power-oriented resistance exercises.

Publisher

MDPI AG

Subject

Bioengineering

Reference30 articles.

1. Craig, J.J. (2004). Introduction to Robotics: Mechanics and Control, Pearson Prentice Hall. [3rd ed.].

2. Siciliano, B., Sciavicco, L., Villani, L., and Oriolo, G. (2009). Robotics Modelling, Planning and Control, Springer.

3. Zatsiorsky, V.M. (1998). Kinematics of Human Motion, Human Kinetics.

4. Zatsiorsky, V.M. (2002). Kinetics of Human Motion, Human Kinetics.

5. Dynamic interactions between limb segments during planar arm movements;Hollerbach;Biol. Cybern.,1982

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3