Revolutionizing Early Disease Detection: A High-Accuracy 4D CNN Model for Type 2 Diabetes Screening in Oman

Author:

Al Sadi Khoula12ORCID,Balachandran Wamadeva1

Affiliation:

1. Department of Electronic and Electrical Engineering Research, Brunel University London, Uxbridge UB8 3PH, UK

2. Information Technology Department, University of Technology and Applied Sciences-Al-Mussanha, P.O. Box 13, Muladdah 314, Sultanate of Oman

Abstract

The surge of diabetes poses a significant global health challenge, particularly in Oman and the Middle East. Early detection of diabetes is crucial for proactive intervention and improved patient outcomes. This research leverages the power of machine learning, specifically Convolutional Neural Networks (CNNs), to develop an innovative 4D CNN model dedicated to early diabetes prediction. A region-specific dataset from Oman is utilized to enhance health outcomes for individuals at risk of developing diabetes. The proposed model showcases remarkable accuracy, achieving an average accuracy of 98.49% to 99.17% across various epochs. Additionally, it demonstrates excellent F1 scores, recall, and sensitivity, highlighting its ability to identify true positive cases. The findings contribute to the ongoing effort to combat diabetes and pave the way for future research in using deep learning for early disease detection and proactive healthcare.

Publisher

MDPI AG

Subject

Bioengineering

Reference46 articles.

1. To tackle diabetes, science and health systems must take into account social context;Seiglie;Nat. Med.,2021

2. World Health Organization (2023, April 05). Diabetes. Available online: https://www.who.int/news-room/fact-sheets/detail/diabetes.

3. Global, regional, and national burden and trend of diabetes in 195 countries and territories: An analysis from 1990 to 2025;Lin;Sci. Rep.,2020

4. Ganasegeran, K., Hor, C.P., Jamil, M.F.A., Loh, H.C., Noor, J.M., Hamid, N.A., Suppiah, P.D., Manaf, M.R.A., Ch’ng, A.S.H., and Looi, I. (2020). A Systematic Review of the Economic Burden of Type 2 Diabetes in Malaysia. Int. J. Environ. Res. Public Health, 17.

5. Impact of diabetes on healthcare costs in a population-based cohort: A cost analysis;Rosella;Diabet. Med.,2015

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3