Leveraging a 7-Layer Long Short-Term Memory Model for Early Detection and Prevention of Diabetes in Oman: An Innovative Approach

Author:

Al Sadi Khoula12ORCID,Balachandran Wamadeva1

Affiliation:

1. Department of Electronic and Electrical Engineering Research, Brunel University London, Uxbridge UB8 3PH, UK

2. Information Technology Department, University of Technology and Applied Sciences-Al-Mussanha, P.O. Box 13, Muladdah 314, Oman

Abstract

This study develops a 7-layer Long Short-Term Memory (LSTM) model to enhance early diabetes detection in Oman, aligning with the theme of ‘Artificial Intelligence in Healthcare’. The model focuses on addressing the increasing prevalence of Type 2 diabetes, projected to impact 23.8% of Oman’s population by 2050. It employs LSTM neural networks to manage factors contributing to this rise, including obesity and genetic predispositions, and aims to bridge the gap in public health awareness and prevention. The model’s performance is evaluated through various metrics. It achieves an accuracy of 99.40%, specificity and sensitivity of 100% for positive cases, a recall of 99.34% for negative cases, an F1 score of 96.24%, and an AUC score of 94.51%. These metrics indicate the model’s capability in diabetes detection. The implementation of this LSTM model in Oman’s healthcare system is proposed to enhance early detection and prevention of diabetes. This approach reflects an application of AI in addressing a significant health concern, with potential implications for similar healthcare challenges relating to globally diagnostic capabilities, representing a significant leap forward in healthcare technology in Oman.

Funder

Brunel University London

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3