Anomaly Detection for Sensor Signals Utilizing Deep Learning Autoencoder-Based Neural Networks

Author:

Esmaeili Fatemeh12ORCID,Cassie Erica23ORCID,Nguyen Hong Phan T.23,Plank Natalie O. V.23ORCID,Unsworth Charles P.12,Wang Alan456

Affiliation:

1. Department of Engineering Science, University of Auckland, Auckland 1010, New Zealand

2. The MacDiarmid Institute for Advanced Materials and Nanotechnology, Victoria University of Wellington, Wellington 6021, New Zealand

3. School of Chemical and Physical Sciences, Victoria University of Wellington, Wellington 6021, New Zealand

4. Auckland Bioengineering Institute, University of Auckland, Auckland 1010, New Zealand

5. Center for Medical Imaging, Faculty of Medical and Health Sciences, University of Auckland, Auckland 1010, New Zealand

6. Centre for Brain Research, University of Auckland, Auckland 1010, New Zealand

Abstract

Anomaly detection is a significant task in sensors’ signal processing since interpreting an abnormal signal can lead to making a high-risk decision in terms of sensors’ applications. Deep learning algorithms are effective tools for anomaly detection due to their capability to address imbalanced datasets. In this study, we took a semi-supervised learning approach, utilizing normal data for training the deep learning neural networks, in order to address the diverse and unknown features of anomalies. We developed autoencoder-based prediction models to automatically detect anomalous data recorded by three electrochemical aptasensors, with variations in the signals’ lengths for particular concentrations, analytes, and bioreceptors. Prediction models employed autoencoder networks and the kernel density estimation (KDE) method for finding the threshold to detect anomalies. Moreover, the autoencoder networks were vanilla, unidirectional long short-term memory (ULSTM), and bidirectional LSTM (BLSTM) autoencoders for the training stage of the prediction models. However, the decision-making was based on the result of these three networks and the integration of vanilla and LSTM networks’ results. The accuracy as a performance metric of anomaly prediction models showed that the performance of vanilla and integrated models were comparable, while the LSTM-based autoencoder models showed the least accuracy. Considering the integrated model of ULSTM and vanilla autoencoder, the accuracy for the dataset with the lengthier signals was approximately 80%, while it was 65% and 40% for the other datasets. The lowest accuracy belonged to the dataset with the least normal data in its dataset. These results demonstrate that the proposed vanilla and integrated models can automatically detect abnormal data when there is sufficient normal data for training the models.

Funder

Royal Society of New Zealand

Publisher

MDPI AG

Subject

Bioengineering

Cited by 14 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3