Bone Anomaly Detection by Extracting Regions of Interest and Convolutional Neural Networks

Author:

Meqdad Maytham N.1ORCID,Rauf Hafiz Tayyab2ORCID,Kadry Seifedine345ORCID

Affiliation:

1. Computer Techniques Engineering Department, Al-Mustaqbal University College, Hillah 51001, Iraq

2. Centre for Smart Systems, AI and Cybersecurity, Staffordshire University, Stoke-on-Trent ST4 2DE, UK

3. Department of Applied Data Science, Noroff University College, 4612 Kristiansand, Norway

4. Artificial Intelligence Research Center (AIRC), Ajman University, Ajman 346, United Arab Emirates

5. Department of Electrical and Computer Engineering, Lebanese American University, Byblos 1102-2801, Lebanon

Abstract

The most suitable method for assessing bone age is to check the degree of maturation of the ossification centers in the radiograph images of the left wrist. So, a lot of effort has been made to help radiologists and provide reliable automated methods using these images. This study designs and tests Alexnet and GoogLeNet methods and a new architecture to assess bone age. All these methods are implemented fully automatically on the DHA dataset including 1400 wrist images of healthy children aged 0 to 18 years from Asian, Hispanic, Black, and Caucasian races. For this purpose, the images are first segmented, and 4 different regions of the images are then separated. Bone age in each region is assessed by a separate network whose architecture is new and obtained by trial and error. The final assessment of bone age is performed by an ensemble based on the Average algorithm between 4 CNN models. In the section on results and model evaluation, various tests are performed, including pre-trained network tests. The better performance of the designed system compared to other methods is confirmed by the results of all tests. The proposed method achieves an accuracy of 83.4% and an average error rate of 0.1%.

Publisher

MDPI AG

Subject

Artificial Intelligence,Applied Mathematics,Industrial and Manufacturing Engineering,Human-Computer Interaction,Information Systems,Control and Systems Engineering

Reference28 articles.

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3