U-Net Architecture for Prostate Segmentation: The Impact of Loss Function on System Performance

Author:

Montazerolghaem Maryam1,Sun Yu1,Sasso Giuseppe23,Haworth Annette1ORCID

Affiliation:

1. School of Physics, The University of Sydney, Sydney, NSW 2006, Australia

2. Radiation Oncology Department, Auckland City Hospital, Auckland 1023, New Zealand

3. Faculty of Medical and Health Sciences, University of Auckland, Auckland 1010, New Zealand

Abstract

Segmentation of the prostate gland from magnetic resonance images is rapidly becoming a standard of care in prostate cancer radiotherapy treatment planning. Automating this process has the potential to improve accuracy and efficiency. However, the performance and accuracy of deep learning models varies depending on the design and optimal tuning of the hyper-parameters. In this study, we examine the effect of loss functions on the performance of deep-learning-based prostate segmentation models. A U-Net model for prostate segmentation using T2-weighted images from a local dataset was trained and performance compared when using nine different loss functions, including: Binary Cross-Entropy (BCE), Intersection over Union (IoU), Dice, BCE and Dice (BCE + Dice), weighted BCE and Dice (W (BCE + Dice)), Focal, Tversky, Focal Tversky, and Surface loss functions. Model outputs were compared using several metrics on a five-fold cross-validation set. Ranking of model performance was found to be dependent on the metric used to measure performance, but in general, W (BCE + Dice) and Focal Tversky performed well for all metrics (whole gland Dice similarity coefficient (DSC): 0.71 and 0.74; 95HD: 6.66 and 7.42; Ravid 0.05 and 0.18, respectively) and Surface loss generally ranked lowest (DSC: 0.40; 95HD: 13.64; Ravid −0.09). When comparing the performance of the models for the mid-gland, apex, and base parts of the prostate gland, the models’ performance was lower for the apex and base compared to the mid-gland. In conclusion, we have demonstrated that the performance of a deep learning model for prostate segmentation can be affected by choice of loss function. For prostate segmentation, it would appear that compound loss functions generally outperform singles loss functions such as Surface loss.

Funder

National Health and Medical Research Council

Cancer Institute of New South Wales

SW-TCRC Partner Program

Publisher

MDPI AG

Subject

Bioengineering

Cited by 10 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3