A Comparative Study of Automated Machine Learning Platforms for Exercise Anthropometry-Based Typology Analysis: Performance Evaluation of AWS SageMaker, GCP VertexAI, and MS Azure

Author:

Choi Wansuk1,Choi Taeseok2ORCID,Heo Seoyoon3ORCID

Affiliation:

1. Department of Physical Therapy, International University of Korea, Jinju 17731, Republic of Korea

2. Department of Medical Performance Center (MPC), Sejong Sports Medicine and Performance Hospital, Seoul 05006, Republic of Korea

3. Department of Occupational Therapy, College of Medical and Health Sciences, Kyungbok University, Namyangju 12051, Republic of Korea

Abstract

The increasing prevalence of machine learning (ML) and automated machine learning (AutoML) applications across diverse industries necessitates rigorous comparative evaluations of their predictive accuracies under various computational environments. The purpose of this research was to compare and analyze the predictive accuracy of several machine learning algorithms, including RNNs, LSTMs, GRUs, XGBoost, and LightGBM, when implemented on different platforms such as Google Colab Pro, AWS SageMaker, GCP Vertex AI, and MS Azure. The predictive performance of each model within its respective environment was assessed using performance metrics such as accuracy, precision, recall, F1-score, and log loss. All algorithms were trained on the same dataset and implemented on their specified platforms to ensure consistent comparisons. The dataset used in this study comprised fitness images, encompassing 41 exercise types and totaling 6 million samples. These images were acquired from AI-hub, and joint coordinate values (x, y, z) were extracted utilizing the Mediapipe library. The extracted values were then stored in a CSV format. Among the ML algorithms, LSTM demonstrated the highest performance, achieving an accuracy of 73.75%, precision of 74.55%, recall of 73.68%, F1-score of 73.11%, and a log loss of 0.71. Conversely, among the AutoML algorithms, XGBoost performed exceptionally well on AWS SageMaker, boasting an accuracy of 99.6%, precision of 99.8%, recall of 99.2%, F1-score of 99.5%, and a log loss of 0.014. On the other hand, LightGBM exhibited the poorest performance on MS Azure, achieving an accuracy of 84.2%, precision of 82.2%, recall of 81.8%, F1-score of 81.5%, and a log loss of 1.176. The unnamed algorithm implemented on GCP Vertex AI showcased relatively favorable results, with an accuracy of 89.9%, precision of 94.2%, recall of 88.4%, F1-score of 91.2%, and a log loss of 0.268. Despite LightGBM’s lackluster performance on MS Azure, the GRU implemented in Google Colab Pro displayed encouraging results, yielding an accuracy of 88.2%, precision of 88.5%, recall of 88.1%, F1-score of 88.4%, and a log loss of 0.44. Overall, this study revealed significant variations in performance across different algorithms and platforms. Particularly, AWS SageMaker’s implementation of XGBoost outperformed other configurations, highlighting the importance of carefully considering the choice of algorithm and computational environment in predictive tasks. To gain a comprehensive understanding of the factors contributing to these performance discrepancies, further investigations are recommended.

Funder

the National Research Foundation of Korea through University Innovation Research Project

the Kyungbok University’s Industry-University Cooperation Foundation

Publisher

MDPI AG

Subject

Bioengineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3