Tuning the Fe(II)/hydroxide Ratio during Synthesis of Magnetite Nanoparticles to Maximize Cr(VI) Uptake Capacity

Author:

Kalaitzidou KyriakiORCID,Chioti Evangelia,Asimakidou Theopoula,Karfaridis DimitriosORCID,Vourlias George,Mitrakas Manassis,Simeonidis KonstantinosORCID

Abstract

The impact of hydroxyl excess as defined by the Fe(II)/hydroxide ratio during the synthesis of Fe3O4 nanoparticles by oxidative precipitation of FeSO4 was examined as a critical parameter determining the potential for Cr(VI) uptake from polluted water. Various samples were prepared by varying the OH− excess in the range of −0.10 up to +0.03 M and characterized according to their composition, morphology, and surface configuration. Their efficiency for Cr(VI) removal was evaluated by batch adsorption tests, carried out under similar conditions with drinking water purification in the concentration range below 10 mg/L. Results indicate that near the zero-excess point for hydroxyl balance, the uptake capacity for residual Cr(VI) concentration equal to 25 μg/L remains at very low levels (<0.5 mg/g). However, a small increase above +0.02 M features synthesized nanoparticles with an uptake capacity of 2.5 mg/g owed to the decrease in particles size (28 nm) and enhancement of the reducing potential (Fe2+/Fe3+ = 0.42). In addition, utilizing negative excess values below −0.05 M triggers a similar efficiency rise, although the morphology of the obtained aggregates is rather different. Such finding is attributed to a possible exchange mechanism between adsorbed sulfates and chromate anions that assist approach of Cr(VI) to the material’s surface. Overall, proper tuning of hydroxyl excess offers multiple options for the implementation of monodisperse magnetically responsive nanoparticles or larger aggregates with optimized purification efficiency in water technology.

Funder

Hellenic Foundation for Research and Innovation

Publisher

MDPI AG

Subject

Water Science and Technology,Aquatic Science,Geography, Planning and Development,Biochemistry

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Magnetically-assisted removal of selenium and molybdenum from water using iron oxyhydroxides;Journal of Water Process Engineering;2024-02

2. Post-use Recovery of Nanoparticles;Nanoparticles as Sustainable Environmental Remediation Agents;2023-10-18

3. A rotary magnetic separator integrating nanoparticle-assisted water purification: Simulation and laboratory validation;Journal of Water Process Engineering;2023-07

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3