Post-use Recovery of Nanoparticles

Author:

Kalaitzidou K.1,Merachtsaki D.2

Affiliation:

1. aDepartment of Chemical Engineering, School of Engineering, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece

2. bDepartment of Chemistry, Division of Chemical and Environmental Technology, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece

Abstract

The continuously increasing broad area covering applications of nanoparticles such as nanoelectronics, molecular assemblies, tissue engineering, biomedicine, LED lighting, electronic devices, solar panels, water filtration, consumer products and nanocomposites result in the respective increase of nanowastes, followed by an uncontrolled release in the environment. The lack of a specific framework for nanoparticle waste management sets nanowaste recycling as a matter of high importance due to sustainability and economic reasons. Even though the field of nanoparticle reuse is crucial, relevant research is still premature, while recycling methods are limited. Thus, the present chapter on post-use recovery of nanoparticles provides an overview of the following subjects: (a) optimum approaches and available methodologies to capture, recover and regenerate nanoparticles after their use in environmental applications and (b) classification and evaluation of their potential according to economic viability and sustainability.

Publisher

Royal Society of Chemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3