Abstract
In this work, we give provable sieving algorithms for the Shortest Vector Problem (SVP) and the Closest Vector Problem (CVP) on lattices in ℓp norm (1≤p≤∞). The running time we obtain is better than existing provable sieving algorithms. We give a new linear sieving procedure that works for all ℓp norm (1≤p≤∞). The main idea is to divide the space into hypercubes such that each vector can be mapped efficiently to a sub-region. We achieve a time complexity of 22.751n+o(n), which is much less than the 23.849n+o(n) complexity of the previous best algorithm. We also introduce a mixed sieving procedure, where a point is mapped to a hypercube within a ball and then a quadratic sieve is performed within each hypercube. This improves the running time, especially in the ℓ2 norm, where we achieve a time complexity of 22.25n+o(n), while the List Sieve Birthday algorithm has a running time of 22.465n+o(n). We adopt our sieving techniques to approximation algorithms for SVP and CVP in ℓp norm (1≤p≤∞) and show that our algorithm has a running time of 22.001n+o(n), while previous algorithms have a time complexity of 23.169n+o(n).
Subject
Computational Mathematics,Computational Theory and Mathematics,Numerical Analysis,Theoretical Computer Science
Cited by
3 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献
1. A Survey of Algorithms for Addressing the Shortest Vector Problem (SVP);Lecture Notes of the Institute for Computer Sciences, Social Informatics and Telecommunications Engineering;2024
2. Covering Convex Bodies and the Closest Vector Problem;Discrete & Computational Geometry;2022-05-01
3. Approximate $$\mathrm {CVP}_{}$$ in Time $$2^{0.802 n}$$ - Now in Any Norm!;Integer Programming and Combinatorial Optimization;2022