Faster Provable Sieving Algorithms for the Shortest Vector Problem and the Closest Vector Problem on Lattices in ℓp Norm

Author:

Mukhopadhyay PriyankaORCID

Abstract

In this work, we give provable sieving algorithms for the Shortest Vector Problem (SVP) and the Closest Vector Problem (CVP) on lattices in ℓp norm (1≤p≤∞). The running time we obtain is better than existing provable sieving algorithms. We give a new linear sieving procedure that works for all ℓp norm (1≤p≤∞). The main idea is to divide the space into hypercubes such that each vector can be mapped efficiently to a sub-region. We achieve a time complexity of 22.751n+o(n), which is much less than the 23.849n+o(n) complexity of the previous best algorithm. We also introduce a mixed sieving procedure, where a point is mapped to a hypercube within a ball and then a quadratic sieve is performed within each hypercube. This improves the running time, especially in the ℓ2 norm, where we achieve a time complexity of 22.25n+o(n), while the List Sieve Birthday algorithm has a running time of 22.465n+o(n). We adopt our sieving techniques to approximation algorithms for SVP and CVP in ℓp norm (1≤p≤∞) and show that our algorithm has a running time of 22.001n+o(n), while previous algorithms have a time complexity of 23.169n+o(n).

Publisher

MDPI AG

Subject

Computational Mathematics,Computational Theory and Mathematics,Numerical Analysis,Theoretical Computer Science

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. A Survey of Algorithms for Addressing the Shortest Vector Problem (SVP);Lecture Notes of the Institute for Computer Sciences, Social Informatics and Telecommunications Engineering;2024

2. Covering Convex Bodies and the Closest Vector Problem;Discrete & Computational Geometry;2022-05-01

3. Approximate $$\mathrm {CVP}_{}$$ in Time $$2^{0.802 n}$$ - Now in Any Norm!;Integer Programming and Combinatorial Optimization;2022

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3