Covering Convex Bodies and the Closest Vector Problem

Author:

Naszódi MártonORCID,Venzin Moritz

Abstract

AbstractWe present algorithms for the $$(1+\epsilon )$$ ( 1 + ϵ ) -approximate version of the closest vector problem for certain norms. The currently fastest algorithm (Dadush and Kun 2016) for general norms in dimension n has running time of $$2^{O(n)}(1/\epsilon )^n$$ 2 O ( n ) ( 1 / ϵ ) n . We improve this substantially in the following two cases. First, for $$\ell _p$$ p -norms with $$p>2$$ p > 2 (resp. $$p \in [1,2]$$ p [ 1 , 2 ] ) fixed, we present an algorithm with a running time of $$2^{O(n)}(1+1/\epsilon )^{n/2}$$ 2 O ( n ) ( 1 + 1 / ϵ ) n / 2 (resp. $$2^{O(n)} (1+1/\epsilon )^{n/p}$$ 2 O ( n ) ( 1 + 1 / ϵ ) n / p ). This result is based on a geometric covering problem, that was introduced in the context of CVP by Eisenbrand et al.: How many convex bodies are needed to cover the ball of the norm such that, if scaled by factor 2 around their centroids, each one is contained in the $$(1+\epsilon )$$ ( 1 + ϵ ) -scaled homothet of the norm ball? We provide upper bounds for this $$(2,\epsilon )$$ ( 2 , ϵ ) -covering number by exploiting the modulus of smoothness of the $$\ell _p$$ p -balls. Applying a covering scheme, we can boost any 2-approximation algorithm for CVP to a $$(1+\epsilon )$$ ( 1 + ϵ ) -approximation algorithm with the improved run time, either using a straightforward sampling routine or using the deterministic algorithm of Dadush for the construction of an epsilon net. Second, we consider polyhedral and zonotopal norms. For centrally symmetric polytopes (resp. zonotopes) in $${\mathbb R}^n$$ R n with O(n) facets (resp. generated by O(n) line segments), we provide a deterministic $$O(\log _2(2+1/\epsilon ))^{O(n)}$$ O ( log 2 ( 2 + 1 / ϵ ) ) O ( n ) time algorithm. This generalizes the result of Eisenbrand et al. which applies to the $$\ell _\infty $$ -norm. Finally, we establish a connection between the modulus of smoothness and lattice sparsification. As a consequence, using the enumeration and sparsification tools developped by Dadush, Kun, Peikert, and Vempala, we present a simple alternative to the boosting procedure with the same time and space requirement for $$\ell _p$$ p norms. This connection might be of independent interest.

Funder

Hungarian Scientific Research Fund

Schweizerischer Nationalfonds zur Förderung der Wissenschaftlichen Forschung

Magyar Tudományos Akadémia

Publisher

Springer Science and Business Media LLC

Subject

Computational Theory and Mathematics,Discrete Mathematics and Combinatorics,Geometry and Topology,Theoretical Computer Science

Reference28 articles.

1. Abdelkader, A., Mount, D.M.: Economical Delone sets for approximating convex bodies. In: 16th Scandinavian Symposium and Workshops on Algorithm Theory (Malmö 2018). Leibniz International Proceedings in Informatics, vol. 101, # 4. Leibniz-Zent. Inform., Wadern (2018)

2. Aggarwal, D., Dadush, D., Stephens-Davidowitz, N.: Solving the closest vector problem in $$ 2^n$$ time—the discrete Gaussian strikes again! In: 56th Annual Symposium on Foundations of Computer Science (Berkeley 2015), pp. 563–582. IEEE, Los Alamitos (2015)

3. Aggarwal, D., Mukhopadhyay, P.: Improved algorithms for the Shortest Vector Problem and the Closest Vector Problem in the infinity norm (2018). arXiv:1801.02358

4. Aggarwal, D., Stephens-Davidowitz, N.: Just take the average! An embarrassingly simple $$2^n$$-time algorithm for SVP (and CVP). In: 1st Symposium on Simplicity in Algorithms (New Orleans 2018). OpenAccess Series in Informatics, vol. 61, # 12. Leibniz-Zent. Inform., Wadern (2018)

5. Ajtai, M., Kumar, R., Sivakumar, D.: A sieve algorithm for the shortest lattice vector problem. In: 33rd Annual ACM Symposium on Theory of Computing (Hersonissos 2001), pp. 601–610. ACM, New York (2001)

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Economical Convex Coverings and Applications;SIAM Journal on Computing;2024-07-31

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3