Deep Learning Automation of Kidney, Liver, and Spleen Segmentation for Organ Volume Measurements in Autosomal Dominant Polycystic Kidney Disease

Author:

Sharbatdaran ArmanORCID,Romano Dominick,Teichman Kurt,Dev Hreedi,Raza Syed I.,Goel AkshayORCID,Moghadam Mina C.,Blumenfeld Jon D.,Chevalier James M.,Shimonov Daniil,Shih George,Wang YiORCID,Prince Martin R.ORCID

Abstract

Organ volume measurements are a key metric for managing ADPKD (the most common inherited renal disease). However, measuring organ volumes is tedious and involves manually contouring organ outlines on multiple cross-sectional MRI or CT images. The automation of kidney contouring using deep learning has been proposed, as it has small errors compared to manual contouring. Here, a deployed open-source deep learning ADPKD kidney segmentation pipeline is extended to also measure liver and spleen volumes, which are also important. This 2D U-net deep learning approach was developed with radiologist labeled T2-weighted images from 215 ADPKD subjects (70% training = 151, 30% validation = 64). Additional ADPKD subjects were utilized for prospective (n = 30) and external (n = 30) validations for a total of 275 subjects. Image cropping previously optimized for kidneys was included in training but removed for the validation and inference to accommodate the liver which is closer to the image border. An effective algorithm was developed to adjudicate overlap voxels that are labeled as more than one organ. Left kidney, right kidney, liver and spleen labels had average errors of 3%, 7%, 3%, and 1%, respectively, on external validation and 5%, 6%, 5%, and 1% on prospective validation. Dice scores also showed that the deep learning model was close to the radiologist contouring, measuring 0.98, 0.96, 0.97 and 0.96 on external validation and 0.96, 0.96, 0.96 and 0.95 on prospective validation for left kidney, right kidney, liver and spleen, respectively. The time required for manual correction of deep learning segmentation errors was only 19:17 min compared to 33:04 min for manual segmentations, a 42% time saving (p = 0.004). Standard deviation of model assisted segmentations was reduced to 7, 5, 11, 5 mL for right kidney, left kidney, liver and spleen respectively from 14, 10, 55 and 14 mL for manual segmentations. Thus, deep learning reduces the radiologist time required to perform multiorgan segmentations in ADPKD and reduces measurement variability.

Funder

National Institutes of Health

Publisher

MDPI AG

Subject

Radiology, Nuclear Medicine and imaging

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3