Directional Forgetting for Stable Co-Adaptation in Myoelectric Control

Author:

Yeung DennisORCID,Farina DarioORCID,Vujaklija IvanORCID

Abstract

Conventional myoelectric controllers provide a mapping between electromyographic signals and prosthetic functions. However, due to a number of instabilities continuously challenging this process, an initial mapping may require an extended calibration phase with long periods of user-training in order to ensure satisfactory performance. Recently, studies on co-adaptation have highlighted the benefits of concurrent user learning and machine adaptation where systems can cope with deficiencies in the initial model by learning from newly acquired data. However, the success remains highly dependent on careful weighting of these new data. In this study, we proposed a function driven directional forgetting approach to the recursive least-squares algorithm as opposed to the classic exponential forgetting scheme. By only discounting past information in the same direction of the new data, local corrections to the mapping would induce less distortion to other regions. To validate the approach, subjects performed a set of real-time myoelectric tasks over a range of forgetting factors. Results show that directional forgetting with a forgetting factor of 0.995 outperformed exponential forgetting as well as unassisted user learning. Moreover, myoelectric control remained stable after adaptation with directional forgetting over a range of forgetting factors. These results indicate that a directional approach to discounting past training data can improve performance and alleviate sensitivities to parameter selection in recursive adaptation algorithms.

Funder

Horizon 2020 Framework Programme

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Biochemistry,Instrumentation,Atomic and Molecular Physics, and Optics,Analytical Chemistry

Cited by 12 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. User Training With Error Augmentation for sEMG-Based Gesture Classification;IEEE Transactions on Neural Systems and Rehabilitation Engineering;2024

2. High-fidelity interfacing for bionic rehabilitation;Progress in Motor Control;2024

3. Progressive unsupervised control of myoelectric upper limbs;Journal of Neural Engineering;2023-11-24

4. Optimal Motor Unit Subset Selection for Accurate Motor Intention Decoding: Towards Dexterous Real-Time Interfacing;IEEE Transactions on Neural Systems and Rehabilitation Engineering;2023

5. Active upper limb prostheses: a review on current state and upcoming breakthroughs;Progress in Biomedical Engineering;2023-01-01

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3