Runoff Prediction Based on the Discharge of Pump Stations in an Urban Stream Using a Modified Multi-Layer Perceptron Combined with Meta-Heuristic Optimization

Author:

Lee Won JinORCID,Lee Eui HoonORCID

Abstract

Runoff in urban streams is the most important factor influencing urban inundation. It also affects inundation in other areas as various urban streams and rivers are connected. Current runoff predictions obtained using a multi-layer perceptron (MLP) exhibit limited accuracy. In this study, the runoff of urban streams was predicted by applying an MLP using a harmony search (MLPHS) to overcome the shortcomings of MLPs using existing optimizers and compared with the observed runoff and the runoff predicted by an MLP using a real-coded genetic algorithm (RCGA). Furthermore, the results of the MLPHS were compared with the results of the MLP with existing optimizers such as the stochastic gradient descent, adaptive gradient, and root mean squared propagation. The runoff of urban steams was predicted based on the discharge of each pump station and rainfall information. The results obtained with the MLPHS exhibited the smallest error of 39.804 m3/s when compared to the peak value of the observed runoff. The MLPHS gave more accurate runoff prediction results than the MLP using the RCGA and that using existing optimizers. The accurate prediction of the runoff in an urban stream using an MLPHS based on the discharge of each pump station is possible.

Funder

National Research Foundation of Korea

Publisher

MDPI AG

Subject

Water Science and Technology,Aquatic Science,Geography, Planning and Development,Biochemistry

Reference63 articles.

1. The perceptron: A probabilistic model for information storage and organization in the brain.

2. Self-organized formation of topologically correct feature maps

3. The Organization of Behavior: A Neuropsychological Theory;Hebb,1949

4. Neural networks and physical systems with emergent collective computational abilities.

5. Probabilistic Reasoning in Intelligent Systems: Networks of Plausible Inference;Pearl,1988

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3