RNN- and LSTM-Based Soft Sensors Transferability for an Industrial Process

Author:

Curreri FrancescoORCID,Patanè LucaORCID,Xibilia Maria GabriellaORCID

Abstract

The design and application of Soft Sensors (SSs) in the process industry is a growing research field, which needs to mediate problems of model accuracy with data availability and computational complexity. Black-box machine learning (ML) methods are often used as an efficient tool to implement SSs. Many efforts are, however, required to properly select input variables, model class, model order and the needed hyperparameters. The aim of this work was to investigate the possibility to transfer the knowledge acquired in the design of a SS for a given process to a similar one. This has been approached as a transfer learning problem from a source to a target domain. The implementation of a transfer learning procedure allows to considerably reduce the computational time dedicated to the SS design procedure, leaving out many of the required phases. Two transfer learning methods have been proposed, evaluating their suitability to design SSs based on nonlinear dynamical models. Recurrent neural structures have been used to implement the SSs. In detail, recurrent neural networks and long short-term memory architectures have been compared in regard to their transferability. An industrial case of study has been considered, to evaluate the performance of the proposed procedures and the best compromise between SS performance and computational effort in transferring the model. The problem of labeled data scarcity in the target domain has been also discussed. The obtained results demonstrate the suitability of the proposed transfer learning methods in the design of nonlinear dynamical models for industrial systems.

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Biochemistry,Instrumentation,Atomic and Molecular Physics, and Optics,Analytical Chemistry

Cited by 50 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3